Benyu Wang

Yao Class, Tsinghua University, Beijing, China

(+86) 156-3680-5108 | wang-by19@mails.tsinghua.edu.cn | wbyyui.github.io

Interests	
• Broad interest in Theoretical Computer Science .	
\circ Study and research experience in $\bf Algorithms$ / $\bf Combinatorics$	/ Complexity Theory
Education	
Yao Class, Tsinghua University	Beijing, China
B.Eng. Candidate, Computer Science and Technology	Aug 2019 – (exp.) Jul 2023
o Special CS Pilot Class, established by the Turing Award Laureau	te, Prof. Andrew Yao .
∘ GPA: 3.89 /4.00 (33 /94) & For Yao Class courses only: 3.98 /4.00	
o Advisor: <i>Prof. Ran Duan</i>	
Selected Courses : (A+/A stand for 95-100 in 100-point values, A+	is the best grade)
\cdot Mathematics for Computer Science (A+) & Mathematics for Artification	cial Intelligence (A+)
The only one to get both A+ from the two courses instructed by P 1	rof. Andrew Yao in Spring 2020.
\cdot Core Courses: Theory of Computation (A+) & Design and Analysi	s of Algorithms (A+)
\cdot Related Courses: Basic Topology (A) & Abstract Algebra (A+) & G	ame Theory (A) & Cryptography (A)
Experiences	
University of Michigan	Ann Arbor, USA
Undergraduate Research Intern (Visitor)	Feb 2022 – Aug 2022
o Visiting the theory group of UM. invited by <i>Prof. Seth Pettie</i> .	
Publications	
Tight Conditional Lower Bounds for Vertex Connectivity Pro	oblems
Zhiyi Huang, Yaowei Long, Thatchaphol Saranurak, Benyu Wang	
o Manuscript, submitted to STOC 2023. arXiv:2212.00359.	
\circ We give \mathbf{tight} \mathbf{lower} \mathbf{bounds} for vertex connectivity problems as	ssuming the 4-Clique conjecture. We
show that the all-pairs vertex connectivity problem has complexity	$\hat{\Theta}(n^4)$ for combinatorial algorithms.
We give hardness results for other vertex connectivity problems, v	which separate the hardness of these
vertex connectivity problems and related edge connectivity problems	s. Moreover, We obtain lower bounds
and algorithms for sparse graphs.	
\circ In this project, with the guidance of That chaphol, I completed the	e final construction of reductions for
all-pairs and Steiner vertex connectivity problems, and the balancir	ng algorithm for sparse graphs.
Teaching	
TA, Design and Analysis of Algorithms (Graduate-Level Course), F	all 2022 Tsinghua University
Selected Awards and Scholarships	
Excellent Academic Scholarship & Excellent Art Scholarship of	Tsinghua University 2022
Excellent Voluntary and Public Service Scholarship of Tsinghua	a University 2020
Gold Medal in Chinese Mathematical Olympiad (CMO) (ranked 86	
Silver Medal in National Olympiad in Informatics (NOI) (ranked 9	0th in China) 2018
Skills	

- · Languages: Chinese (native) & English (fluent, 103 in TOEFL)
- · Programming: LaTeX, C++, Python (proficient) / SQL, Verilog, Mathematica (familiar)