Benyu Wang ## University of Michigan, Ann Arbor, US | Interests | | |---|--| | • Broad interest in Theoretical Computer Science . | | | • Study and research experience in Graph Algorithms / Combinatorics / Complexity Theory | | | Education | | | University of Michigan | Ann Arbor, US | | PhD student at Computer Science and Engineering (CSE) | Aug 2022 – now | | o Advisor: Prof. Thatchaphol Saranurak | | | Yao Class, Tsinghua University | Beijing, China | | B.Eng., Computer Science and Technology | Aug 2019 – Jun 2023 | | o Advisor: <i>Prof. Ran Duan</i> | | | o GPA: 3.90 /4.00 & For Yao Class courses only: 3.98 /4.00 | | | Selected Courses : (A+/A stand for 95-100 in 100-point values, A+ is | the best grade) | | · Mathematics for Computer Science (A+) & Mathematics for Artificia | l Intelligence (A+) | | The only one to get both A+ from the two courses instructed by Prof. | Andrew Yao in Spring 2020. | | · Theory of Computation (A+) & Design and Analysis of Algorithms (| A +) | | · Basic Topology (A) & Abstract Algebra (A+) & Game Theory (A) & C | ryptography (A) | | Experiences | | | University of Michigan | Ann Arbor, US | | Undergraduate Research Intern (Visitor) | Feb 2022 – Aug 2022 | | o Visiting the theory group of UM. Worked with Prof. Seth Pettie and | Prof. Thatchaphol Saranurak. | | Publications | | | Tight Conditional Lower Bounds for Vertex Connectivity Prob | ems | | Zhiyi Huang, Yaowei Long, Thatchaphol Saranurak, Benyu Wang | | | ziii) i i i i i i i zii g, i i i i i zii g, i i i i i i i i i i i i i i i i i | | | • STOC 2023, arXiv:2212.00359. | | | | ming the 4-Clique conjecture. We | | o STOC 2023, arXiv:2212.00359. | | | STOC 2023, arXiv:2212.00359. We gave tight lower bounds for vertex connectivity problems assu | $\Theta(n^4)$ for combinatorial algorithms | | STOC 2023, arXiv:2212.00359. We gave tight lower bounds for vertex connectivity problems assushowed that the all-pairs vertex connectivity problem has complexity 6 | $\Theta(n^4)$ for combinatorial algorithms | | STOC 2023, arXiv:2212.00359. We gave tight lower bounds for vertex connectivity problems assus showed that the all-pairs vertex connectivity problem has complexity and gave hardness results for other vertex connectivity problems, separately | $\Theta(n^4)$ for combinatorial algorithms | | STOC 2023, arXiv:2212.00359. We gave tight lower bounds for vertex connectivity problems assushowed that the all-pairs vertex connectivity problem has complexity and gave hardness results for other vertex connectivity problems, sepanectivity problems and related edge connectivity problems. | $\Theta(n^4)$ for combinatorial algorithms | | STOC 2023, arXiv:2212.00359. We gave tight lower bounds for vertex connectivity problems assushowed that the all-pairs vertex connectivity problem has complexity and gave hardness results for other vertex connectivity problems, sepanectivity problems and related edge connectivity problems. Teaching | $\hat{O}(n^4)$ for combinatorial algorithms trating the hardness of vertex con- | | STOC 2023, arXiv:2212.00359. We gave tight lower bounds for vertex connectivity problems assus showed that the all-pairs vertex connectivity problem has complexity and gave hardness results for other vertex connectivity problems, sepanectivity problems and related edge connectivity problems. Teaching | $\hat{O}(n^4)$ for combinatorial algorithms trating the hardness of vertex con- | | STOC 2023, arXiv:2212.00359. We gave tight lower bounds for vertex connectivity problems assus showed that the all-pairs vertex connectivity problem has complexity and gave hardness results for other vertex connectivity problems, sepanectivity problems and related edge connectivity problems. Teaching Teaching Assistant, Theory of Computation Undergraduate theory course instructed by Prof. Ran Duan. | $O(n^4)$ for combinatorial algorithms trating the hardness of vertex conspring 2023, Tsinghua University | | STOC 2023, arXiv:2212.00359. We gave tight lower bounds for vertex connectivity problems assus showed that the all-pairs vertex connectivity problem has complexity and gave hardness results for other vertex connectivity problems, sepanectivity problems and related edge connectivity problems. Teaching | $O(n^4)$ for combinatorial algorithms trating the hardness of vertex conspring 2023, Tsinghua University | | STOC 2023, arXiv:2212.00359. We gave tight lower bounds for vertex connectivity problems assusshowed that the all-pairs vertex connectivity problem has complexity and gave hardness results for other vertex connectivity problems, sepan nectivity problems and related edge connectivity problems. Teaching | $O(n^4)$ for combinatorial algorithms trating the hardness of vertex conspring 2023, Tsinghua University Fall 2022, Tsinghua University | | STOC 2023, arXiv:2212.00359. We gave tight lower bounds for vertex connectivity problems assus showed that the all-pairs vertex connectivity problem has complexity and gave hardness results for other vertex connectivity problems, sepanectivity problems and related edge connectivity problems. Teaching | $O(n^4)$ for combinatorial algorithms trating the hardness of vertex conspring 2023, Tsinghua University Fall 2022, Tsinghua University inghua University 2022 | | STOC 2023, arXiv:2212.00359. We gave tight lower bounds for vertex connectivity problems assus showed that the all-pairs vertex connectivity problem has complexity of and gave hardness results for other vertex connectivity problems, sepan nectivity problems and related edge connectivity problems. Teaching | $O(n^4)$ for combinatorial algorithms trating the hardness of vertex consprints $O(n^4)$ for combinatorial algorithms trating the hardness of vertex constraints $O(n^4)$ for combinatorial algorithms trating the hardness of vertex constraints $O(n^4)$ for combinatorial algorithms trating the hardness of vertex constraints $O(n^4)$ for combinatorial algorithms trating $O(n^4)$ for combinatorial algorithms trating $O(n^4)$ for combinatorial algorithms are constraints are constraints and constraints $O(n^4)$ for combinatorial algorithms are constraints and constraints $O(n^4)$ for combinatorial algorithms are constraints and constraints $O(n^4)$ for combinatorial algorithms are constraints are constraints and constraints are constraints and constraints are constraints and constraints are constraints and constraints are constraints are constraints and constraints are |