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Abstract

Envy-freeness is an important notion to represent fairness in
item allocating for n people. In this term paper, we review no-
tions of envy-freeness, issue known properties about the no-
tions, and consider their existence known till now from these
papers. Moreover, we also review the results of the efficiency
issue in fair sharing.

Envy-freeness
The problem of fair division is first mathematically dis-
cussed by Steinhaus in the paper (Steinhaus 1949). Here we
formalize the problem of fair sharing for continuous cases in
the following definition:

Definition. A (continuous) fair sharing instance is a
triple ([n], C, V ), where we have:
• [n]: the set of n agents.
• C = [0, 1]: the item to divide, or to say, ”the cake”.
• V is a set of n valuations V1, ..., Vn, Vi is a function from

any subset of the cake to R+. (Here we consider the case
when agents are hungry and any intervals of non-zero
length gives a positive value.)
This is the problem of allocating ”the cake”. And now we

consider how to measure fairness in a division. Intuitively,
we can think fairness as everybody thinks his part is the
largest and doesn’t envy other people. This is the definition
of envy-free. And we can also regard fairness as every per-
son gets at least 1/n in his valuation, this is called propor-
tional. Formally, the definition is:

Definition. An allocation X is an envy-free allocation
in the fair sharing instance if for each agent i, he regards
Vi(Xi) ≥ Vi(Xj) for all j 6= i.

Definition. An allocation X is proportional in the fair
sharing instance if for each agent i, he regards Vi(Xi) ≥
Vi(C)/n.

It’s easy to see that any envy-free allocation is propor-
tional. The classical and simple case when n = 2, where
two people divide a cake, can be shown to have an envy-free
allocation. The procedure is done by:

• First, one person divide the cake equally in his valuation.

• Then, the other person chooses the more valuable part in
his view.

In this allocation procedure, we can see no one may envy
the other one. Furthermore, for the general case, (Brams and
Taylor 1995) first proved that there’s an envy-free allocation
for all n by giving a protocol for n = 3 and general n to
extend the proof of the n = 2 case. Then (Edward Su 1999)
gives a more simple proof for the existence of an envy-free
division using Sperner’s lemma. Here we sketch the proof:

Theorem 1. There’s an envy-free allocation in the above
continuous case.

Proof(Edward Su 1999). Consider dividing the cake into
n intervals by giving (n−1) cuts from left to right. Consider
the actual length being x1, ..., xn, then xi ≥ 0 and

∑
i xi =

1. Therefore, the possible allocations of this type constitute
a simplex in the n-dimensional euclidean space.

Now we color every node in the following logic:

• If we determine to let agent i to choose at a node, with the
node’s partition, and he chooses the interval j, then use
color j to color the node.

• For any small simplex we consider, we will determine to
let all n agents to choose once corresponding to one of its
nodes.

Then if the simplex is small enough, we can surely give
an envy-free allocation. Originally, we have n nodes, and on
any node ei, the ith interval is the whole cake and it must
be colored i. On any face with xi = 0, nobody will choose
i since it is with zero value and there’s some with more.
Therefore, the coloring is a Sperner coloring.

After that, the paper considered to divide the simplex us-
ing barycentric subdivision given by (Vick 1994). For n = 2
cases, the division is just iteratively connecting any node of
the triangle to the barycenters of its opposite edge and divide
it into 6 triangles, and for general n the case is more com-
plex. Finally, the theorem is proven by Sperner’s lemma.

Moreover, the paper (Edward Su 1999) also solves the
rental harmony problem using Sperner’s lemma.

Therefore, the original existence problem of fair alloca-
tion problem is settled. Some remain problems are about



its existence in extensions. (Segal-Halevi 2017) removed the
assumption that consider cases which the value of a part can
be positive, negative or zero and prove the result for n = 3
and (Meunier and Zerbib 2019) and (Avvakumov and Kara-
sev 2021) gave more general results for the problem with
the boundary condition removed. (Hosseini, Igarashi, and
Searns 2020) and (Igarashi and Meunier 2021) considered
dividing multi-layered cakes with n agents and m intervals.

Another issue is the computational complexity in finding
such a division for cakes. Here, (Stromquist 2008) shows
that no finite protocol can be used to compute the exact envy-
free cake division with general cases for n ≥ 3 where every
person get a continuous part. (Deng, Qi, and Saberi 2012)
further showed that it is as hard as finding a Brouwer’s fixed
point, but gave a FPTAS for n = 3 case with monotone
utility. (Cohler et al. 2011) and (Aziz and Mackenzie 2016)
gave cake-cutting algorithms in several different cases.

Another interesting fact is, our proof for n = 2 shows a
protocol knowing only one person’s valuation (and let the
other choose). (Woodall 1980) showed that a envy-free pro-
tocol can be obtained even if one agent’s valuation is not
known for general n, and (Meunier and Su 2019) gave more
general result for Sperner’s lemma and Fan’s lemma and
showed there’s a division into (n − 1) parts which can be
envy free with anyone absent and others choose their parts.

Envy-freeness up to one item (EF1)
Although envy-freeness for continuous cases can be ob-
tained in theory, in discrete cases, it may be another story.
Let’s consider the easiest case when two agents are to al-
locate one discrete item, then there’s no envy-freeness since
the one without any item must be envious of the other. In this
case, to represent fairness in sharing, we need to relax the re-
quirement of envy-freeness. We first formalize the discrete
fair sharing instance by:

Definition. A (discrete) fair sharing instance is a triple
([n],M, V ), where we have:

• [n]: the set of n agents.
• M : the m items to divide.
• V is a set of n valuations V1, ..., Vn, Vi : 2M → R+ is

a function from any subset of M to R+. The valuation is
additive if Vi(X) =

∑
g∈X Vi({g}), that is, the valuation

of a set is the sum of the valuations of its items.

Then (Budish 2011) gives the definition of EF1, which is
a relaxation of envy-freeness by considering to delete one
item of j to make i no more envy, which gives the definition
that for all i, j, there exists an item g of j, such that after
deleting g, i no more envy j. Formally:

Definition(Budish 2011). An allocation X is envy-free
up to one item (EF1) if for all i and j, there exists an item
g ∈ Xj such that Vi(Xi) ≥ Vi(Xj − {g}).

Remark that, we can surely define EFk for all number of
items k, however, in this case the definition is not important
since we know that EF1 allocations exist. This result is first

shown by (Lipton et al. 2004). This paper gave a poly-time
algorithm for finding an EF1 allocation using the definition
of envy-cycles. Here we sketch the proof:

Theorem 2. There’s an O(mn3) algorithm to find an EF1
allocation.

Proof(Lipton et al. 2004). First we define something used
in our proof:

• The envy of p to q is eij(X) = max(0, Vi(Xj) −
Vi(Xi)), and the envy of the whole allocation is e(X) =
maxi,jeij(X).

• The envy graph is with n nodes corresponding to agents,
and if i envies j (Vi(Xj) > Vi(Xi)), there’s an edge from
i to j.

Lemma. For any partial allocation A, we can find a new
allocation B with acyclic envy graph and e(B) ≤ e(A).

The proof of lemma is to notice envy cycles in the graph.
If we find a cycle, then we can do a cyclic shift to let every-
one obtain the set he envies on the cycle. Then everyone on
the cycle can get a better utility. Then we can see the envy
in the new partial allocation is less. For agents in the cycle,
the edges for him to envy decreases by at least 1, while other
agents has the same amount of envy edges out. So iteratively
doing this can get an acyclic graph we desire.

Now the algorithm does:

• On every turn j, give item j to an agent without in-degree
in the envy graph.

• Construct the new envy graph of A and use lemma to
get an allocation B with acyclic envy graph and e(B) ≤
e(A).

We can see this algorithm gives an EF1 allocation by in-
duction since we can verify that with adding items, that item
can be deleted and then nobody envies, and generateB from
A certainly doesn’t gviolate the requirement of EF1. The
algorithm can be proved to run in O(mn3) time. Therefore,
this existance problem is solved. It’s remarkable that, the pa-
per also gave a FPTAS for the minimum envy problem with
additive valuations.

Now we consider an alternative idea with efficiency also
considered in the work by (Varian 1973) (with cake cutting)
and (Caragiannis et al. 2019) (with discrete allocating). We
use Pareto optimality and Nash welfare to measure the allo-
cation’s efficiency here. We have:

Definition(Arrow and Intriligator 2000). The Nash wel-
fare(NW) of an allocation X in the fair sharing instance is
the product of every agent’s utility, that is,

∏
i Vi(Xi).

Definition. An allocation X is Pareto optimal(PO) if
there’s no X ′ such that for all i, Vi(X ′i) ≥ Vi(Xi) and there
exists i with Vi(X ′i) > Vi(Xi).

It is easy to show that the allocation maximizing Nash
welfare is PO, and (Caragiannis et al. 2019) showed more:



Theorem 3. A maximum Nash welfare (MNW) allocation
is both PO and EF1 in positive additive valuations.

Proof(Caragiannis et al. 2019). We only consider the case
that everyone has some utility since else we can allocate a
subset of people one item each to guarantee the EF1 prop-
erty.

Now consider an allocation which is MNW but not EF1.
If i envies j even if after deleting any item in Xj , then we
consider giving something from j to i. Let g∗ be the item in
Xj minimizing Vj(g)/Vi(g). Then after giving g∗ from j to
i we have:

NW (X ′)

NW (X)
> 1⇔ Vj(g

∗)

Vi(g∗)
(Vi(Xi) + Vi(g

∗)) < Vj(Xj)

This can be obtained from the minimization:
Vj(g

∗)

Vi(g∗)
≤ Vj(Xj)

Vi(Xj)

With the fact that EF1 is violated:

Vi(Xi) + Vi(g) < Vi(Xj)

Therefore, we know a MNW allocation is both EF1 and
PO, which means it has good properties considering both
fairness and efficiency.

It is shown (Nguyen, Roos, and Rothe 2013) that MNW
allocation is NP-hard. However, the paper gave an algorithm
running fast in common cases on spliddit.org and giving
possibility that this division can sometimes be used in re-
ality.

After the existence of EF1 allocation is settled, some pa-
pers also focused on extensions and computation issues. We
can see that this property is mature in some degree with lots
of extensions. For example, (Bilò et al. 2018) considered
the EF1 allocation problem for items on a graph and one
must get connected pieces. (Barman et al. 2019) considered
the complexity of EF1 property in truthful auctions. (Biswas
and Barman 2018) considered the existence of EF1 in cardi-
nality and matroid constraints. (Aziz et al. 2019) gave new
algorithms for EF1 and discuss the EF1 and PO properties
when there’s negative utility. In general, more and more ex-
tensions are caring about more complex cases, and discuss
EF1 property in these cases.

Finally we remark that, there’s another relaxation of pro-
portionality, which is called maximin share (MMS) also by
(Budish 2011). It is proved by (Procaccia and Wang 2014)
that MMS allocations possibly not exists in some allocation
instances. And there are multiple works now to get approxi-
mate MMS sharings.

Envy-freeness up to any item (EFX)
We noticed that EF1 shows that “envy disappears after the
removal of the most valuable item”, however, that item
“might be the primary reason for very large envy to exist”
(Chaudhury, Garg, and Mehlhorn 2020). Therefore, we need
a stronger notion than EF1, which is also a relaxation of EF,
to describe the fairness in item allocating. Here, (Caragian-
nis et al. 2019) gave the definition of envy-freeness up to

any item (EFX), which allows envy to disappear even after
the removal of the least valuable item. We can define EFX
in disctete problems as:

Definition(Caragiannis et al. 2019). An allocation X is
envy-free up to any item (EFX) if for all i and j, for all
item g ∈ Xj , we have Vi(Xi) ≥ Vi(Xj − {g}).

EFX may be the most convincible definition of fairness
we know till now, however, EFX allocations are also obvi-
ously harder to get compared to EF1 with higher require-
ments. We can see that the techniques we discussed in EF1,
which are envy cycles and MNEs, cannot be directly used to
get an allocation with EFX. Therefore, the related research is
focused on the existance of EFX. Several papers have shown
that EFX allocation exists in special cases, however, the gen-
eral problem questioning EFX allocation exists or not is still
open. And this problem may be the most important one now
in this field.

Let’s first consider the easiest case when the valuations of
agents are identical. In this case, EFX allocations are proved
to exist by (Plaut and Roughgarden 2020). Here we consider
the same valuation as V and we have a theorem:

Theorem 4. EFX allocation exists in the case with positive
additive valuations with everyone identical.

Proof(Plaut and Roughgarden 2020). We consider such a
procedure: every time if the set Xj − g is envied by some-
body, we give g from j to one with minimal utility, say i,
then we know the utility of i strictly increases (since we give
positive valuation to him) and the utility of j is also strictly
larger than the original utility of i (since j is envied).

Therefore, the minimal utility strictly increases or the
number of person with that utility decreases by 1. So we
know the procedure will end. Then we get an EFX alloca-
tion by this procedure.

This theorem at least gives us a point to start, however,
even for some simple cases, the proof known by us may be
highly nontrivial. Therefore, probably we can’t easily extend
any known proof to the general case with low effort.

EFX is known to be true in various constraints. (Mahara
2020) shows that if there’s only two possible valuations in all
agents, there’s an EFX allocation (hence for the two person
case). (Chaudhury, Garg, and Mehlhorn 2020) gives a proof
for the three person case with additive valuations.

One relaxation of EFX is to get approximate results.
The first result is done by (Plaut and Roughgarden 2020),
which got an 1/2-EFX allocation. Here, an α-EFX alloca-
tion means Vi(Xi) ≥ αVi(Xj − {g}) for all i, j and item
g ∈ Xj . (Amanatidis, Markakis, and Ntokos 2020) beats the
1/2 value to 0.618 and (Chaudhury et al. 2021) gives proof
to all small constants ε.

Another relaxation of EFX, which is called ”EFX with
charity”, allowing giving a subset an EFX allocation with
high social welfare, is proven by (Chaudhury et al. 2020)
(there’s a trivial case when we allocate an empty subset, but
the article proved that it can be more efficient).



Efficiency issues are also considered. (Plaut and Rough-
garden 2020) shows EFX and PO may not coexist in an al-
location, this is different from EF1, and (Amanatidis et al.
2021) gives answer to whether a MNW allocation can be
EFX in situations. (Chaudhury, Garg, and Mehlhorn 2020)
shows that there’s cases with partial EFX allocation not
pareto dominated by any full EFX allocation and even with
higher Nash welfare. (Schulman and Vazirani 2012) and
(Hosseini, Igarashi, and Searns 2020) considered EFX al-
locations with efficiency in lexicographic preference.

Summary
We mainly talk about three fairness issues: EF, EF1 and EFX
with envy-freeness. For EF in continuous cases and EF1 in
discrete cases (even with PO), the existence are clear and
the recent research focused on more extensions like com-
putation complexity, more complex conditions and cases, or
the applications into real world’s division. For EFX, the def-
inition is reasonable but not known to have a proof for ex-
istence. Therefore, recent papers focus on settling this open
problem (or at least in easy cases), and some papers also
consider further.
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